
Basics of WireGuard

What is WireGuard?
How does WireGuard work?
Generating a public/private keypair

WireGuard configuration options

[Interface]
Address
ListenPort
PrivateKey
DNS
Table
MTU
PreUp
PostUp
PreDown
PostDown
[Peer]
Endpoint
AllowedIPs
PublicKey
PersistentKeepalive

WireGuard example configs

Simple router/bounce node with 3 clients

WireGuard

Basics of WireGuard

Basics of WireGuard

WireGuard is a fairly new Layer 3 VPN protocol that runs on top of UDP. It's main selling points are
that it is very easy to configure and also very fast (It can easily reach speeds in excess of 1 Gbit/s
without much resource utilization).

It is available for every major operating system you can find in the wild (namely Windows, Linux
(and its derivatives) and Mac OS)

To understand how simple the configuration is, have a look at the following snippet:

That small little amount of config would allow 3 clients to connect to the WireGuard "server" with
their own matching private keys!

Want to use WireGuard for your own network? Great! See the rest of this documentation here!

What is WireGuard?

[Interface]

Address = 10.0.0.1/24

ListenPort = 51820

PrivateKey = 4BhSWsplXEJrqSDvb/kIy6FzfXkimLF4b3h/nrz/vkY=

[Peer]

PublicKey = EzEyCarbQdia+D0u7aRvSDL4hz3YCQQjgvOVGBEPBDo=

AllowedIPs = 10.0.0.2/32

[Peer]

PublicKey = dq/DbVCb40ZjuKZZv1EhTH/4FQRGme4pe07B5CIvuVo=

AllowedIPs = 10.0.0.3/32

[Peer]

PublicKey = UDIqfBJAKc1YmpvRxDSM4tc3ZrbzNHduEqVqZmG4CXU=

AllowedIPs = 10.0.0.4/32

https://learn.beako.net/books/wireguard/chapter/basics-of-wireguard

Basics of WireGuard

WireGuard works by using cryptographic keys to encapsulate packets, then sending them using it's
own routing table, It's generally regarded as a secure and fast way to send packets, and is highly
scalable and deployable!

How does WireGuard work?

Basics of WireGuard

Generating a public and private key in wireguard is super easy! You'll know how to do it in a matter
of seconds :D

To generate a private key you should run this

This will generate your private key, print it to your terminal and write it to a file in the path you
specify above

To get the matching public key for this private key, you need only run this!

Generating a public/private
keypair

wg genkey | sudo tee /path/to/where/you/want/your/private.key

sudo cat /wherever/your/private/key.is | wg pubkey | sudo tee /path/to/your/new/public.key

WireGuard configuration
options

WireGuard configuration options

The [Interface] config option for the local device running the tunnel

Used as

[Interface]

[Interface]

WireGuard configuration options

This config option defines the addresses for the device being configured. It goes under the
[Interface] config block and it varies depending on what the wireguard node is doing. If this node is
acting as a router for other clients on the network (bounce node/router) It should be a subnet
assigned to the interface, similar to how you would assign a subnet to a routers interface. IG;
192.0.2.1/24 or 2001:DB8::/64

Specifying multiple addresses should be done with comma separated values of each
subnet/address using CIDR notation always.

IE; Address = 192.0.2.1/24,2001:DB8::/64

Address
Address

WireGuard configuration options

ListenPort is a config option for hard programming a port to bind to, this is typically used on
routers/bounce nodes/relays that are relaying traffic for other devices. Wireguard is always UDP
and cannot be set to use TCP.

Example usage is ListenPort = 1600
The default wireguard port is 51820

ListenPort

WireGuard configuration options

The PrivateKey config option defines the private key for the node you are configuring. Not much
else to say about this besides Do not give your private key to anyone

Example is PrivateKey = thisisaprivatekeybcdabcdabcdabcda=

You can learn how to generate a private key here!

PrivateKey

https://learn.beako.net/books/wireguard/page/generating-a-publicprivate-keypair

WireGuard configuration options

The DNS config flag sets the DNS servers for use with the tunnel, and is generally set on devices
redirecting all there traffic via a bounce node (typical commercial VPN style setup)

Example usage is
Dns = 1.1.1.1
For more than one, separate the values with commas, like
Dns = 1.1.1.1,1.0.0.1

DNS

WireGuard configuration options

The Table flag is crucially important for use with more advanced setups, like passing BGP traffic
and routes via a wireguard tunnel, there are multiple options, auto being the default, where
wireguard makes it's own table and adds routes by itself, which is fine for clients, but bad if you
want BGP to make routes, the second option is to specify a specific table you want routes added to.
The third option is Table = off, which adds no routes automatically, and is ideal when you are using
dynamic routing engines like BGP.

Examples are below

Auto

Specific table

No tables

Table

Table = auto (or don't specify this option, this is the default)

Table = 2345 (or any table you want)

Table = off

WireGuard configuration options

The MTU flag as you would probably guess sets the MTU of the tunnel, it's default is 1420 or
whatever your upstream internet line is set to. but using this command you can lower this (or raise
it, but be warned unless your entire path supports jumbo frames this is likely to break your
connection on a standard 1500 MTU line). Basically don't touch this unless you have a need to

Example usage is below

MTU

MTU = 1392

WireGuard configuration options

PreUp is used to run a command before your tunnel interface is brought up. This command can
also be used more than once, and is very useful for adding static routes for tunnels that accept full
BGP tables and other specific use cases

Example is below

PreUp

PreUp = ip ro add 1.1.1.1 dev eth0 via 4.4.3.1

WireGuard configuration options

Similar to Preup PostUp is used to run commands, but PostUp runs after the tunnel is up and
running. This is useful for adding firewall rules or internal to tunnel routes after it's been built.
Example is below

PostUp

PostUp = ip addr add 4.5.6.2/32 dev wg0

https://learn.beako.net/books/wireguard/page/preup

WireGuard configuration options

The PreDown command is used to run commands on request the tunnel be destroyed/brought
down, it's the inverse of PreUp and is useful to remove things added on the construction of the
tunnel that depend on it existing, like IP addresses on it's interface

Example is below

PreDown

PreDown = ip addr del 4.5.6.2/32 dev wg0

https://learn.beako.net/books/wireguard/page/preup

WireGuard configuration options

The PostDown similar to the others is the inverse of PostUp and will run commands on the
successful destruction of the tunnel. useful for removing things you added for the tunnel to work
initially

Example below!

PostDown

PostDown = ip ro del 1.1.1.1 dev eth0 via 4.4.3.2

https://learn.beako.net/books/wireguard/page/postup

WireGuard configuration options

[Peer] is used for defining the VPN settings for a remote node capable of routing traffic for one or
more addresses being itself and other devices attached to it. Peers can be either a router style box
that passes traffic to other peers, or a client via LAN/internet that is not behind a NAT and only
routes traffic for itself (typically a client device like a phone or laptop).

[Peer]

WireGuard configuration options

Defines the public IP:port of a remote peer or device. Do not include this for devices that sit behind
a NAT or otherwise do not have a static public IP address as it will break the connection when it
changes. This should only be defined if the peer has a static, unchanging address, like a
bounce/router node.

Example below

Endpoint

Endpoint = 5.5.5.5:5000

Endpoint = 2601:2601::1:5000

WireGuard configuration options

AllowedIPs defines any IP ranges for which the device will be routing or passing traffic for. Client
devices like laptops and phones will generally only have one or two IPs, being an IPv4 and IPv6
address of the client. On router nodes/bounce boxes this should be the subnets for which the
router/bounce node will handle. It can be used more than once in the config file. You can specify
multiple by using commas to separate the values, or you can just add multiple lines of AllowedIps.
Similar to other routing engines it will prefer shortest length paths first, so if you have 1.1.1.1/32,
1.1.1.0/24, and 0.0.0.0/0 it will always pick 1.1.1.1/32 first.

Examples below!

AllowedIPs

peer is a router for other peers

AllowedIPs = 192.0.2.1/24, 2601:2601::/48

peer is a relay server that routes to itself and all nodes on its local interface

AllowedIPs = 192.0.2.3/32,192.168.1.1/24

peer is a relay devices that routes to itself and only one other peer

AllowedIPs = 192.0.2.3/32,192.0.2.4/32

peer is a routing server that bounces all internet & VPN traffic (similar to commercial VPNs)

AllowedIPs = 0.0.0.0/0,::/0

peer is a client device that only does traffic for itself.

AllowedIPs = 192.0.2.3/32, 2601:2601:c::3/128

WireGuard configuration options

This config option is used to define the public key of the remote node! to find out how to get the
public IP of a remote node you created, check out this page!

If you're using someone elses wireguard server, this should have been provided to you on setup.

Example of use below :D

PublicKey

PublicKey = thisisapublickey12341231234=

https://learn.beako.net/books/wireguard/page/generating-a-publicprivate-keypair

WireGuard configuration options

PersistentKeepalive is used for devices that are behind nats or other restrictive firewalls to prevent
an idle connection from being terminated by the firewall, it works by periodically sending traffic
over the tunnel to tell firewalls and NAT devices in the way to keep the session alive. Avoid using
this unless you need it as it uses un-needed traffic otherwise.

Example below ^^

PersistentKeepalive

PersistentKeepalive = 25

(this is a sane value for most NATs, if it's particularly restrictive or quick to close, try

lowering the value.)

WireGuard example configs

WireGuard example configs

DO NOT USE THE KEYS IN THESE EXAMPLES, THEY ARE PUBLIC AND SHOULD NEVER BE
USED IN PRODUCTION

Bounce node config

Client 1

Simple router/bounce node
with 3 clients

[Interface]

Address = 10.0.0.1/24

ListenPort = 51820

PrivateKey = sFHggcBxny9La+jQIQEZjrF4eT6U6IZ7kIbE9Xt+I14=

[Peer]

PublicKey = TruSQaN5wVCTgdWNkTin+h21JbJUXy6tNoSRixBMXlQ=

AllowedIPs = 10.0.0.2/32

[Peer]

PublicKey = ebkxqf5sUC41lZIX2sfdt0XHTdyr+Ii2Ox7CIqwcpHQ=

AllowedIPs = 10.0.0.3/32

[Peer]

PublicKey = DJ8OhWf4rOG/KsYrmrLwUheI7r+bv0oiMCcYXvjsnUQ=

AllowedIPs = 10.0.0.4/32

[Interface]
Address = 10.0.0.2/24
ListenPort = 51820
PrivateKey = wO5JlyMuZBydG8r/VcmeYgag4A2+w9ChSu2tS9uTbkA=

[Peer]
PublicKey = EFEa6B4ZyajlVHBguXAhTjixiR7hr6PbhCn4EeA46m4=
AllowedIPs = 0.0.0.0/0, ::/0
Endpoint = myserver.dyndns.org:51820

Client 2

Client 3

[Interface]
Address = 10.0.0.3/24
ListenPort = 51820
PrivateKey = uGcpY6TmDovligr0pB+rRUblExRcoH7ohFGFyOTJH38=

[Peer]
PublicKey = EFEa6B4ZyajlVHBguXAhTjixiR7hr6PbhCn4EeA46m4=
AllowedIPs = 0.0.0.0/0, ::/0
Endpoint = myserver.dyndns.org:51820

[Interface]
Address = 10.0.0.4/24
ListenPort = 51820
PrivateKey = 4LsV6UgThgUUtGsJu9o1JapbhTy6p4Mbixb0YsJ8lmA=

[Peer]
PublicKey = EFEa6B4ZyajlVHBguXAhTjixiR7hr6PbhCn4EeA46m4=
AllowedIPs = 0.0.0.0/0, ::/0
Endpoint = myserver.dyndns.org:51820

